Course Title: Statics
Semester Course Prefix and Number: ENGR 2410
Old Quarter Course Prefix and Number: ENGR 221
Course Purpose Code:

- 0 – Developmental Courses
- 1 – Non-transferable, General Education
- 2 – Technical course related to career programs
- 3 – College course which has the primary goal of applying certain concepts (e.g. vocal ensemble)
- 4 - Other college course not considered a part of general education (MNTC) e.g. computer science, health, physical education
- 5 – Course which is intended to fulfill the Minnesota Transfer Curriculum (MNTC) requirements.
- 9 – Continuing Education/Customized Training specialized credit course (not occurring in 0-5)

Catalog Description:
This course applies vector algebra to equilibrium analysis of structures, frames and machines.
It studies resultants of force systems, equilibrium of rigid bodies, analysis of structures, centroids, moments of inertia, friction and methods of virtual work.

Prerequisites and/or recommended entry skills/knowledge:
Course Prerequisite(s): PHYS 1571 Engineering Physics I
Reading Prerequisite: None
Composition Prerequisite: None
Mathematics Prerequisite: MATH 1561 Calculus I

Career Programs and Transfer Majors Accessing this Course:
Engineering majors

Minnesota Transfer Curriculum Goal(s) partially met by this course if applicable: Notes: No more than two goals may be met by any one course. (Curriculum Committee review and the Chief Academic Officer’s approval are required).

0. None
1. Communications
2. Critical Thinking
3. Natural Sciences
4. Mathematical/Logical Reasoning
5. History and the Social and Behavioral Sciences
6. The Humanities and Fine Arts
7. Human Diversity
8. Global Perspectives
9. Ethical and Civic Responsibility
10. People and the Environment
Learning outcomes, including any relevant competencies listed in the Minnesota Transfer Curriculum:

- Learn how to apply the techniques of vector algebra to systems in static equilibrium.
- Develop a rigorous approach to free body diagram analysis.
- Apply calculus to problems of distributed load and moments of inertia.
- Use energy and virtual work principles for static analysis problems.

Student assessment methods:
Graded homework problems; three problem-based exams; open-ended engineering design project.

Use of instructional technology (includes software, interactive video and other instructional technologies):
Use of mathematical software (MathCAD, Mathematica, Derive, Excel) for numerical analysis and graphics.

Outline of the major course content:
1. Vector algebra including force vectors in 2 and 3-D, Cartesian representation of unit vectors, scalar and vector products.
2. Free-body diagrams for particles and rigid bodies.
3. Use the equations of equilibrium to solve particle equilibrium problems.
4. Calculate moments of forces and resultants of nonconcurrent force systems.
5. Reduction of distributed loads to a specific resultants.
6. Calculate the moments of couples and use the equations of equilibrium to solve rigid body equilibrium problems.
7. Analyze the forces and stresses in trusses, frames and machines.
8. Analyze the equilibrium of rigid bodies subjected to dry friction forces.
9. Find the center of gravity, centroid and moments of inertia of systems of particles and bodies.
10. Analyze the resultant of fluid pressure.
11. Use the principle of virtual work to determine the equilibrium configuration of a series of pin-connected members.
12. Use the potential energy function to investigate the equilibrium configuration of rigid bodies.

Additional special information (special fees, directives on hazardous materials, etc.)

Transfer Information: (Please list colleges/majors that accept this course in transfer.)
This is a standard first course in statics and should be accepted by any engineering school.

Approvals:

<table>
<thead>
<tr>
<th>Body</th>
<th>Representative Signatures</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum Committee</td>
<td>Kim Giemann</td>
<td>April 2, 2002</td>
</tr>
<tr>
<td>Faculty Association</td>
<td>Georgia Suoja</td>
<td>April 8, 2002</td>
</tr>
<tr>
<td>Meet and Confer</td>
<td>Dr. Jill Peterson</td>
<td>April 17, 2002</td>
</tr>
<tr>
<td>Chief Academic Officer</td>
<td>Dr. Jill Peterson</td>
<td>April 17, 2002</td>
</tr>
</tbody>
</table>

Distribution: Original – Administrative Office, Library, Learning Center, Records, Student Services, Curriculum Committee Chair